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Abstract

This paper introduces a dynamic model of the stochastic repayment behavior ex-
hibited by delinquent credit-card accounts. Based on this model, we construct a
dynamic collectability score (DCS) which estimates the account-specific probability
of collecting a given portion of the outstanding debt over any given time horizon.
The model integrates a variety of information sources, including historical repayment
data, account-specific, and time-varying macroeconomic covariates, as well as scheduled
account-treatment actions. Two model-identification methods are examined, based on
maximum-likelihood estimation and the generalized method of moments. The latter
allows for an operational-statistics approach, combining model estimation and perfor-
mance optimization by tailoring the estimation error to business-relevant loss func-
tions. The DCS framework is applied to a large set of account-level repayment data.
The improvements in classification and prediction performance compared to standard
bank-internal scoring methods are found to be significant.
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1 Introduction

The efficient collection of outstanding debt from defaulted credit-card accounts is mission-
critical for many financial institutions. By the end of 2012, the total revolving consumer
credit in the United States amounted to approximately $603 billion (Federal Reserve Bank
H.8, January 2013). During that year about $17 billion in credit-card debt was placed in
collections, driven by an average delinquency rate of 2.88%.1 With such amounts at stake,
even a small improvement in the effectiveness of debt collections would imply a significant
bottom-line impact. For example, an industry-wide improvement of 1% in overall collection
return could produce a gain in excess of $170 million, thus decreasing banks’ cost of capital,
which in turn would lead to more lending and easier access to credit for consumers.2

This paper introduces a dynamic model of consumer repayment behavior on overdue, so-
called “delinquent,”3 credit-card accounts placed in collections. Both the timing and the
amount of repayments are assumed to be random. The repayment amounts are correlated
and their distributions are obtained empirically. Each repayment influences the timing dis-
tribution of the subsequent repayments. This stochastic feedback element captures both the
account holder’s willingness-to-repay and ability-to-repay the outstanding balance, which
in turn provides valuable insight about the actions banks should take to maximize the
expected collections revenue. In addition, the timing distribution of the repayments also
depends on the account holder’s demographic characteristics, the account attributes, the
current economic outlook, as well as planned account-treatment actions. The model is used
to construct a probability distribution for the collectability (i.e., repayment likelihood) of a
delinquent account. The resulting account-specific dynamic collectability score (DCS) esti-
mates, at any time in the collections process, the probability of collecting a given percentage
of the outstanding balance over a desired time horizon. The model and scoring technique are
tested using a large set of account-level repayment data and two different model-estimation
methods—maximum likelihood and prediction-error minimization. The improvements in
classification and prediction performance compared to standard bank-internal scoring meth-
ods are significant. In addition, important insights are obtained for the pricing of delinquent
debt in terms of commission rates offered to collection agencies.

There are four main methodological contributions. First, the model constructed in this paper
represents, to the best of our knowledge, the only continuous-time stochastic approach to the
prediction of repayment processes, leading to account-specific dynamic collection forecasts.
The forecasts are conditional on the repayment history, observed covariates such as FICO
score of the account holder, relevant macroeconomic data (e.g., prime rate), and a given

1The estimate is based on the charge-off and delinquency rates on loans and leases at commercial banks,
reported regularly by the Federal Reserve Bank.

2According to Sufi (2009), over 80% of bank financing extended to public firms is in the form of revolving
lines of credit. Moreover, as detailed by Blanchflower and Evans (2004), credit cards play a major role in
financing small businesses.

3Accounts with outstanding balances that are more than 30 days past due are considered delinquent and
entered in the collections process (this definition applies to our dataset in Sec. 5; the details are institution-
specific). The collections process consists of several collection phases often conducted by different outside
collection agencies at commission rates that increase after each phase transition of the account to a different
agency. The management of the overall collections process and the ownership of the delinquent account gen-
erally remain with the originating bank until portfolios of ‘uncollectable’ dead-reserve accounts are eventually
sold off (e.g., via auctions).
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sequence of account-treatment actions. Second, the DCS-based predictions about account
holder’s repayment behavior have—in contrast to many bank-internal scoring systems—
intrinsic meaning in terms of concrete repayment probabilities. The flexibility of the DCS,
with respect to prediction horizon, repayment threshold, and timing, presents a significant
improvement over extant collectability scores, which tend to be static and focused on very
stylized predictions such as distinguishing “payers” from “non-payers”. Third, the model
lays the foundation for account-treatment optimization, as it can be used to forward-simulate
repayment-path realizations conditional on treatment actions. Fourth, the DCS enables the
collections manager to obtain estimates for the expected net value of a delinquent credit-
card account and an estimate of account-specific repayment activity in terms of number of
repayments over a given prediction horizon.

From a practical viewpoint, the results developed here allow for a more precise prediction of
repayment behavior. With an improved understanding of the sensitivity of the repayment
process to covariates and treatment actions (in terms of the identified model parameters), it
is possible to (at least locally) maximize the collection yield by optimizing over the available
actions. In addition to producing a noticeable increase in collection yield, a rigorous model
can help develop a realistic assessment of the risk caused by account delinquency and improve
underwriting through a better choice of account parameters. Moreover, the valuation method
implied by the model allows for an effective computation of “loss given default” (LGD),4 as
defined by the Basel II accords (Basel Committee on Banking Supervision 2004), which feeds
into the determination of banks’ capital-reserve requirements. The valuation method can
also be used for pricing portfolios of dead-reserve accounts for debt-leasing purposes. Lastly,
our model enables the bank to establish effective performance-based collection guidelines.

1.1 Literature Review

Optimization of Credit Collections. Mitchner and Peterson (1957) were among the very
first to study the credit-collections problem from an operations perspective. They noted
that the empirical loss distribution is usually bimodal,5 corresponding to the separate repay-
ment behavior of “skips” (contact not available) versus “nonskips” (contact available), and
focused on the optimal length of account treatment (which they termed “pursuit duration”)
as a stopping problem. For this, Mitchner and Peterson were primarily concerned with
distinguishing payers from non-payers, assuming full “conversion” in the case of payment,
emphasizing that “[i]n a fully rigorous treatment, the entire sequence of intervals between
payments, as well as the payment amounts, should be taken into account as part of the
overall stochastic process” (p. 537).

Subsequent contributions to the credit-collections problem, as laid out by Mitchner and
Peterson, were sparse. Rather than focusing on collections, credit-scoring models were de-
veloped for underwriting new accounts (Bierman and Hausman 1970; for a survey see Rosen-
berg and Gleit 1994) or for estimating the time-to-default (Bellotti and Crook 2009). The
collections problem did not appear on the academic ‘radar screen’ until, in 2004, the Basel
II accords put a spotlight on the capital-reserve requirements induced by the in-aggregate

4The LGD is the percentage of the value of an asset that is lost in the event of a default.
5More recently, Schuermann (2005) also emphasizes bimodality as a critical feature of recovery distribu-

tions for defaulted consumer loans.
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quite substantial loss given default (LGD) in consumer credit (Basel Committee on Banking
Supervision 2004).6 Thomas et al. (2005) provide a survey of the few notable consumer-
credit models up to that point. Our approach to the credit-collections problem implements
the Mitchner-Peterson program by viewing account-repayment paths as realizations of self-
exciting point processes, conditional on observations of repayment history, account-specific
and macroeconomic covariates, as well as past and scheduled future account-treatment ac-
tions. In a discrete-time framework, Almeida Filho et al. (2010) formulate a Markov decision
problem for the optimal timing of a given sequence of account-treatment actions, which, how-
ever, is not conditioned on detailed account-specific repayment behavior. While the model in
our paper supports a similar goal (namely, the optimization of account-treatment actions),
it does strive for higher resolution through the estimation of a nonlinear dynamic model in
continuous time and the explicit use of account-specific features to optimize treatment based
on action-contingent forecasts of repayment behavior.7

Corporate vs. Consumer Debt. Consumer debt-repayment behavior differs from the corre-
sponding corporate behavior in the determinants for delinquency as well as in the relative
absence of market-based indicators such as bond prices (Gross and Souleles 2002; Duygan-
Bump and Grant 2009). Nevertheless, the repayment process of overdue consumer debt
bears similarities to the cash-flow stream of an index corporate default swap (CDS),8 since
both consist of random payments at random times. Unlike an index CDS, for which the loss
distribution of the constituent loans are often assumed to be independent and identically
distributed (i.i.d.) (see, e.g., Azizpour et al. 2011), in the case of delinquent consumer loans,
repayment amounts are correlated. Moreover, the valuation of delinquent consumer loans is
primarily useful if it is made at the account level, since return cash flows are subject to the
issuers’ collections practices.

This paper builds on the literature about corporate default risk. It extends the transform
analysis developed in Duffie et al. (2000) to affine jump-diffusion processes that also include
deterministic jump terms. Errais et al. (2010) apply this type of analysis to a family of self-
and cross-excited point processes to capture the clustering behavior of corporate defaults.
The idea of cross-excitation was introduced in finance by Jarrow and Yu (2001) through
the concept of counterparty risk, where the default of one firm can affect the default of
other firms. The results were extended by Collin-Dufresne et al. (2004) for the pricing of
credit derivatives using an affine jump-diffusion model. The model presented here is related
to Duffie et al. (2007) who use time-series dynamics of firm-specific and macroeconomic
covariates to predict corporate defaults. It also extends Errais et al. (2010) by including an
additional term that acts as the control variable modeling banks’ collection strategy, and
thus allows for account-treatment optimization.

6Altman et al. (2005) provide a collection of papers on the determination of LGD. In the context of
credit-card debt collections these discussions are not fully relevant, for the collections problem exists only
because default has already occurred in the past. Given the bank’s exposure at default (EAD), it is the focus
of our paper to dynamically estimate the LGD conditional on a repayment history and other covariates, for
a given time horizon and repayment threshold.

7The optimization of the credit-collections process based on our stochastic model of the repayment process
is treated in a companion paper (Chehrazi et al. 2014).

8An index CDS can be viewed as a loss-insurance contract on a portfolio of corporate loans.
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Equilibrium Models of Consumer Credit with Default. The problems of credit scoring and
individual consumers’ default decisions (see, e.g., Efrat 2002) have been studied, to some ex-
tent, in the economics literature. This work focuses on a description of the lender-borrower
interaction in the unsecured consumer-credit market to study the welfare implications of
various regulatory policies. Chatterjee et al. (2008) analyze an equilibrium model in which
credit scoring is used as an index encapsulating the borrower’s reputation and creditworthi-
ness. Ausubel (1999), Chatterjee et al. (2007), and Cole et al. (1995), among others, use
game-theoretic models with asymmetric information to describe the notion of credit scoring
as a screening/signaling problem, in an attempt to explain the dynamics of the market for
unsecured debt. Credit scoring is also studied in the statistics literature, where different
classification models have been used to rank consumers based on their creditworthiness and
probability of default. For example, Bierman and Hausman (1970), Boyes et al. (1989),
Hand and Henley (1996), and West (2000) use different statistical methods, including neural
networks, discriminant analysis, and decision trees to distinguish between “bad” and “good”
borrowers. Bellotti and Crook (2009) include macroeconomic covariates (such as interest
rate and the FTSE All-Share Index) to build a pre-default score based on survival analysis.
Despite several studies focusing on estimating pre-default repayment probabilities (Banasik
et al. 1999; Lopes 2008), the extant literature does not consider the estimation of post-default
repayment probabilities that is the focus of this paper.

Application and Estimation of Point Processes. Bartlett (1963) originated the systematic
study of departures of (stationary) point processes from the standard Poisson processes
(Cox and Isham 1980) using autocorrelation functions and spectral analysis. In many prac-
tical applications, such as earthquake prediction (Ogata 1998), an important phenomenon
is data clustering which naturally lends itself to modelling via self-exciting point processes
(Hawkes 1971), incorporating a stochastic feedback element in the evolution of the intensity
process. Relevant for our model of consumer repayment behavior is the class of affine point
processes (Errais et al. 2010) in which the stochastic differential equation for the evolution of
the intensity is linear and can accommodate jump-diffusion processes that we use to incor-
porate the information derived from covariates and account-treatment actions. Applications
of self-exciting point processes in the literature include clustering of aircraft hijacking events
(Holden 1986), criminal behavior (Mohler et al. 2011), contagion in fixed-income financial
markets (Giesecke and Kim 2011), and conversion behavior in response to online advertising
(Xu et al. 2014). The estimation of point processes using maximum-likelihood methods was
pioneered by Rubin (1972) and Ogata (1978). Giesecke and Schwenkler (2012) examine like-
lihood estimators for affine point processes when the explanatory factors are not completely
observed. We apply likelihood estimation in conjunction with a Cramér-von Mises error cri-
terion (Lehmann and Romano 2005). For the credit-collections problem, we show in Secs. 4
and 5 that identifying the model parameters based on the generalized method of moments
(GMM) can provide a better alternative to maximum-likelihood estimation (MLE), much in
the spirit of the recent advances in operational statistics (Besbes et al. 2010).
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1.2 Outline

Sec. 2 introduces the probabilistic structure of the repayment process, together with the
main technical assumptions. In Sec. 3, we determine the probability of repayment and
derive the DCS credit-scoring system as well as a formula for the expected present value of
a delinquent credit-card account. Sec. 4 is concerned with the estimation of the parameters
for the repayment and covariate processes. In Sec. 5, we apply the model and the results
developed earlier and compare the predictive performance to that of standard bank-internal
methods. In addition, we illustrate the optimization of treatment actions. Sec. 6 concludes.

2 Model

Consider a delinquent credit-card account placed in collections. The information that may be
used to predict future account repayment activity stems from a variety of sources. First, the
account is characterized by a set of attributes, including the credit limit, current outstanding
balance, and annual percentage rate (APR). Second, the bank has account-holder-specific
data such as FICO score, annual household income, mortgages, personal bankruptcy events,
as well as credit limits and utilization rates for all issued credit cards (including those from
other institutions). Third, the bank observes covariates which may be relevant for an entire
group of accounts such as market and price indices, prime rate, and unemployment data.
Last, the bank has access to the repayment history leading up to the current outstanding
balance; the available information also includes past and scheduled future account-treatment
actions such as letters, calls, settlement offers, repayment schedules, and legal actions.

A functional model of the repayment process should incorporate these heterogeneous sources
of information. For this, the stochastic sequence of repayments is described by a point
process, whose conditional arrival rate (intensity) is driven by past repayment events (a
jump process), a vector of time-varying covariates (a Markov process), and a sequence of
account-treatment actions (a deterministic jump process). The time-invariant covariates,
which often include account-specific data, are used to determine the parameters for the
evolution of the intensity, except for its long-run steady-state, which is obtained from the
process of time-varying covariates. The latter often includes information which pertains to
an entire group of accounts (e.g., in the form of macroeconomic indicators) and is therefore
referred to as a group-covariate process. In what follows, we introduce the elements of the
repayment process, before detailing the structure of the associated intensity and covariate
processes.9

2.1 Repayment Process

A delinquent account with outstanding balance B0 > 0, placed in the collections process at
time t = 0, is credited with the repayment amounts Zi at times Ti > 0, for i ∈ {1, 2, . . .},
until the balance is paid in full. We assume that the Ti are stopping times with Ti < Ti+1,

9A summary of the notation is provided in Appendix B.
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and that the Zi are nonnegative random variables.10 For an outstanding balance Bi after
the i-th repayment Zi, denote by Ri = Zi/Bi−1 the corresponding relative repayment, so

Zi = B0

i−1∏
k=1

(1−Rk)Ri, i ≥ 1. (1)

The random sequence N = (Ti, Ri, i ≥ 1), referred to as “repayment process,” characterizes
the account’s repayment behavior. We assume that the Ri, i ≥ 1, are i.i.d. Note that
notwithstanding this assumption, the absolute repayments (Zi) are correlated. For example,
as soon as an outstanding balance is paid in full (Ri′ = 1, or equivalently Zi′ = Bi′−1,
for some Ti′), subsequent repayments generated by the model will be zero while relative
repayments remain i.i.d. (Zi = BiRi = 0 · Ri, for i > i′). Intuitively, the i.i.d. assumption
is consistent with the “regenerative” structure of the repayment process, in the sense that
taking into account the effects of a repayment and normalizing the remaining outstanding
balance to one produces a structurally identical process. The distribution of the Ri is taken
as exogenous and is estimated empirically. This distribution, together with Eq. (1), specifies
a probability distribution for the repayment amounts (Zi, i ≥ 1), whose fit is evaluated using
the Empirical Generalized Runs (EGR) test in Sec. 5.

2.2 Intensity Process

We denote the counting process associated with (Ti, i ≥ 1) by Nt. This process is uniquely
identified by an intensity process λt, which quantifies the conditional arrival rate of repayment
events. The dynamics of the intensity process are described by a stochastic differential
equation (SDE). Specifically, we assume that λt solves

dλt = κ(y)
(
λ∞(Xt)− λt

)
dt+ δ>1 (y) dJt + δ>2 (y) dat, t ∈ R+, (2)

where Xt is a Markov process with values in D ⊂ RnX (containing dynamic macroeconomic
indicators), y ∈ Rny

+ is a constant vector (containing time-invariant account attributes), Jt
is a two-dimensional jump process (describing the repayments), and at is a deterministic,
nondecreasing, right-continuous, piecewise constant function, with values in Rna (containing
scheduled account-treatment actions). The functions λ∞(·) and

(
κ, δ1, δ2

)
(·) are assumed to

be nonnegative-valued and affine.

To better understand the evolution of the intensity process λt, consider first the special case
where (δ1, δ2) = 0 and λ∞ is constant. Then the jump terms in Eq. (2) vanish, and the
intensity process is described by a deterministic law of motion,

λt = λ∞ + (λ0 − λ∞)e−κt, t ∈ R+,

where λ0 ≥ 0 is a given initial value. In this setting, λt reverts to its long-run steady-state
λ∞ at the rate κ. A similar intuition applies when jump terms are present and λ∞ is not
constant. The change in the intensity caused by the jump process Jt or account treatment

10All random variables are defined with respect to a complete probability space (Ω,F , P ) together with an
information filtration F = {Ft : t ∈ R+}, satisfying the usual hypotheses (Protter 2005). Random variables
(except for Greek letters) are generally capitalized with realizations appearing in lower case.
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actions at dissipates at the instantaneous rate κ as λt reverts to its long-run steady-state
λ∞. The long-run steady-state depends on the dynamic group-covariate process Xt which
typically comprises macroeconomic observables (e.g., inflation rate, unemployment rate, CPI,
and GDP). Hence, the better the economic outlook in terms of group covariates, the greater
is the chance of recovering the outstanding debt in the long-run. In our formulation, the
tendency to observe larger repayments in a booming economy is mapped by the model to
a probabilistic increase in the number of repayments. Conversely, a tendency to observe
smaller repayment amounts in an economic downturn translates into a decreased repayment
likelihood. Therefore, without loss of generality, the repayment amounts (Zi, i ≥ 1) are
assumed to be independent of Xt.

The jump process Jt = [Nt,Rt]
> in the SDE (2) is an equivalent representation of the

repayment process N , where Nt =
∑

i 1{Ti≤t} and Rt =
∑

iRi 1{Ti≤t}. The counting process
Nt is independent of the repayment amount Zi, reflecting the account holder’s willingness-to-
repay. The mark process Rt depends on the repayment amounts Zi, indicating the account
holder’s ability-to-repay. The difference in the two dimensions of the repayment process (Nt
vs. Rt) can be appreciated by considering the somewhat extreme (yet not too unlikely) event
when a relative repayment vanishes (Ri = 0), corresponding to a bounced check. Such an
event signals the account holder’s high willingness to repay her debt, but at the same time,
it also reveals her low ability to do so.

Remark 1. The arrival rate λt of the counting process Nt depends on the history of Nt itself
through both components of J . This self-excitation feature is useful for modelling stochastic
phenomena with clustering effects, where the past arrival of events affects the arrival of future
events. In the context of debt collection, the frequency and amount of past repayments con-
vey information about the account holder’s willingness-to-repay (Nt) and ability-to-repay
(Rt). Incorporating this information into the dynamics of the intensity process naturally
leads to a self-exciting point process. Viewed from this perspective, our dynamic repay-
ment model follows the Errais et al. (2010) form. However, a key difference between their
model and ours is the presence of a deterministic jump process describing scheduled account-
treatment actions. This enables us to probabilistically attribute the collections outcome over
a given horizon to different treatment actions taken in the past, establishing a framework
for account-treatment optimization (Chehrazi et al. 2014).

2.3 Covariate Process

We distinguish account-specific covariates that drive the fixed effects for any given account,
and group covariates that determine random effects for a set (or “group”) of similar accounts.

2.3.1 Account-Specific Covariates

The account-specific covariates are summarized by the nonnegative, time-invariant vector y
of dimension ny. They include attributes such as credit limit, outstanding balance, interest
rate, as well as information on the account holder, such as FICO score, mortgage payments,
and status of other credit cards (current/past due/written off). This data is either held by
the bank or made available by various credit-rating agencies, usually on a monthly basis.
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To separate the estimation of the dynamics of these covariates from the estimation of the
account’s repayment behavior, we assume them to be fixed at their current values. Mod-
elling the covariates as a time-varying process would increase the parameter space and likely
deteriorate the out-of-sample performance due to overfitting (Hastie et al. 2009). This is also
consistent with much of the credit-collections data observed by the authors (see Sec. 5): while
account covariates such as FICO score show significant variation across accounts/holders,
they remain essentially constant for any given account over a typical collection cycle of
four months. The fixed-effect covariate vector y can be adjusted periodically, resulting in a
moving-horizon approach.

The account-specific information vector y determines, in large part, the account quality in
terms of its collectability (i.e., repayment likelihood). Specifically, the intensity parameters
κ, δ1, δ2 depend on y. The parameter κ determines how fast the intensity approaches its
long-run steady-state (in the absence of further jumps), effectively determining the memory
of the system. The parameter δ1 = [δ11, δ12]> determines how past repayment events affect
future repayment events. Its components determine the importance of the account holder’s
willingness-to-repay (via δ11) and her ability-to-repay (via δ12), respectively. Lastly, the
parameter δ2 determines the sensitivity of the intensity with respect to account-treatment
actions. The latter include bank-level actions such as moving the account from one collection
phase (and agency) to the next (agency), adjusting commissions paid to collection agencies,
as well as extending settlement offers, and agency-level interventions such as sending form
letters, establishing first-party contacts, offering repayment plans, and filing lawsuits. The
treatment schedule is modelled by a right-continuous, piecewise constant, vector-valued de-
terministic jump process at of dimension na, each component of which describes one type of
account treatment (e.g., payment-plan offers or form letters). The pre-formulated treatment
schedule at generates, via the SDE (2), jumps in the repayment-intensity process λt whenever
an action is carried out. Because of the exponential decay, the effect of any given treatment
intervention diminishes over time.

2.3.2 Group Covariates

Groups of similar accounts are influenced by time-varying group covariates. For example,
macroeconomic covariates, such as inflation rate, unemployment rate, CPI, GDP, and prime
rate, contain relevant aggregate information about the economy as a whole. The vector-
valued group-covariate process Xt determines the long-run intensity λ∞(Xt) in Eq. (2) for
an account group. To model the dynamics of these covariates we assume that Xt uniquely
solves the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt, (3)

where Wt is a standard Wiener process in RnX ; µ and σσ> are affine functions mapping
RnX to RnX and RnX×nX , respectively.11 One can interpret the SDE (3) as the limit of
an autoregressive conditional heteroskedasticity (ARCH) model, when the length of the
time step in the underlying stochastic difference equation is taken to zero (Nelson 1990).

11Duffie and Kan (1996) obtain sufficient conditions on µ and σ which guarantee the existence and unique-
ness of Xt in the domain of admissible covariates, D =

{
x ∈ RnX : σ(x)σ>(x) ≥ 0

}
, where the SDE (3) is

nondegenerate. For any such µ and σ, Prop. A1 in Appendix A provides necessary and sufficient conditions
that ensure λt is well defined.
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The ARCH-process family has been widely applied in the econometrics literature to model
the dynamics of financial time series (Bollerslev et al. 1992). Our modeling choice here
is motivated on the one hand by the high heteroskedasticity in our observations, which is
consistent with numerous empirical studies on financial data (Bollerslev et al. 1994), and on
the other hand by the aforementioned asymptotic connection between ARCH and diffusion
models.

3 Performance Quantification

3.1 Repayment Probability

Given a positive time horizon τ and the current time t, up to which information is available,
we seek to determine the probability that over the interval (t, t + τ ] the total repayment of
an account with current outstanding balance Bt > 0 exceeds a given threshold B ∈ [0, Bt).
This amounts to computing the τ -horizon repayment probability

Πt,t+τ (B/Bt) , P{
Nt+τ∑
i=Nt+1

Zi > B|Ft}, (4)

where Ft contains all currently available information, of which—as shown next—only the
ratio B/Bt matters. The repayment probability in Eq. (4) constitutes our dynamic col-
lectability score (DCS), an explicit expression of which can be obtained based on the dynamic
repayment model in Eqs. (2) and (3). When passing from absolute to relative repayments
as in Eq. (1), the right-hand side of Eq. (4) becomes

P{Bt −
Nt+τ∑
i=Nt+1

Zi < Bt −B|Ft} = P{Bt

Nt+τ∏
i=Nt+1

(1−Ri) < Bt −B|Ft}

= P{
Nt+τ∑
i=Nt+1

Qi < log(
Bt −B
Bt

)|Ft},

where Qi , log(1 − Ri) denotes the logarithm of the outstanding balance percentage after
the i-th relative repayment. Provided the conditional characteristic function (CCF) of the
corresponding cumulative logarithmic relative-repayment process Qt+τ − Qt ,

∑Nt+τ
i=Nt+1Qi

is known, Lévy’s inversion theorem can be used to compute this τ -horizon repayment prob-
ability. Next, the repayment CCF is derived explicitly to compute the DCS.

3.2 Collectability Scoring

Defining X̂t = [Qt, λt, X>t ]>, Eqs. (2) and (3) together specify a combined affine jump-
diffusion model in which one of the jump factors is deterministic. Specifically, X̂t solves

dX̂t = µ̂(X̂t)dt+ σ̂(X̂t)dŴt + δ̂1dĴt + δ̂2dat, (5)

9



where Ŵt is a standard Wiener process in RnX̂ , and all the remaining model parameters and
variables are suitably augmented.12

The conditional characteristic function of Qt+τ −Qt is a special form of the transform that
appears naturally in affine term-structure models of interest rates, e.g., to price zero-coupon
bonds and European options (Duffie et al. 2000) or to value defaultable bonds and sovereign
debt (Gibson and Sundaresan 1999; Merrick 1999). The key difference here is the presence
of deterministic jumps to incorporate the bank’s collection strategy and thus to optimize the
account value by appropriately varying this strategy. The following result, formulated in a
more general setting in Appendix A, extends a statement by Duffie et al. (2000, Prop. 1) to
affine jump-diffusion processes with deterministic jump terms.

Proposition 1 (Repayment CCF). Let θm, for m ∈ {m
¯
, . . . , m̄}, denote the known jump

arrival times of as, for s ∈ (t, t+τ ], and let (α̂, β̂) be the (unique) solution to the initial-value
problem

˙̂αs + µ̂>0 β̂s + β̂>s σ̂0σ̂
>
0 β̂s/2 = 0, α̂t+τ = 0, (6)

˙̂
βs + µ̂>1 β̂s + β̂>s σ̂1σ̂

>
1 β̂s/2 =

(
1− E[eβ̂

>
s δ̂1∆Ĵ ]

)
ê2, β̂t+τ = ζê1, (7)

on [t, t + τ ], where êl ∈ RnX̂ is the l-th Euclidean basis vector, and ζ ∈ C is given.13 Under
a set of technical conditions, provided in Appendix A, the repayment CCF is given by

E
[
eζ(Qt+τ−Qt)

∣∣Ft

]
= exp

[
−∆α̂t,t+τ −∆β̂>t,t+τX̂t +

m̄∑
m=m

¯

β̂>θm δ̂2∆aθm

]
, (8)

where ∆aθm , aθm − aθ−m, ∆α̂t,t+τ , α̂t+τ − α̂t, and ∆β̂t,t+τ , β̂t+τ − β̂t.

Similar to Duffie et al. (2000), the above result is obtained by noticing that E[eζ(Qt+τ−Qt)|Fs]
is martingale for s ∈ [t, t + τ ]; hence its drift has to be zero. This together with the affine
structure of the SDE (5) provides us with ODEs (6)–(7). The ODE (7) is a generalized Riccati
equation, where the term β̂>s σ̂1σ̂

>
1 β̂s is a shorthand description of a vector in RnX̂ , such that[

β̂>s σ̂1σ̂
>
1 β̂s

]
l
≡ β̂>s σ̂

l
1(σ̂l1)>β̂s for l ∈ {1, . . . , nX̂}. For special cases (e.g., when nX̂ = 1

and δ̂1 = 0) an analytical solution to (6)–(7) can be obtained (Jódar and Navarro 1991);
numerical solutions are available using the various standard integration methods for ODEs
(Butcher 2008).

Proposition 2 (Dynamic Collectability Score). The τ -horizon repayment probability in
Eq. (4) is equal to

Πt,t+τ (B/Bt) =
1

2
−
∫ ∞
−∞

e
−∆α̂t,t+τ (jw)−∆β̂>t,t+τ (jw)X̂t+

∑m̄
m=m

¯
β̂>θm (jw)δ̂2∆aθm−jw log(1− B

Bt
)

2π(jw)
dw, (9)

12µ̂(x̂) = µ̂0 + µ̂1x̂ in which (µ̂0, µ̂1) ∈ RnX̂ × RnX̂×nX̂ combines the drift terms of Eqs. (2) and (3);
and σ̂(x̂)σ̂>(x̂) = σ̂0 +

∑nX̂

l=1 σ̂
l
1x̂l where

(
σ̂0, (σ̂

l
1)

nX̂

l=1

)
∈ RnX̂×nX̂ × RnX̂×nX̂×nX̂ expands σ(x)σ>(x) to

a function from RnX̂ to RnX̂×nX̂ . Furthermore, Ĵt = [Qt,Nt,Rt] has i.i.d. jumps denoted by ∆Ĵ , and

(δ̂1, δ̂2) ∈ RnX̂×3 × RnX̂×na is obtained by properly resizing (δ1, δ2) (see Eqs. (25)–(27) in Appendix A).
13The solution (α̂s, β̂s) depends on the given boundary value (0, ζ) for s = t+ τ . The value ζ is in practice

either complex or real, ζ ∈ {jw, 1}, where j =
√
−1 and w ∈ R. To keep notation simple the parametric

dependence is suppressed when not needed explicitly.
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where (α̂, β̂) solves the initial-value problem (6)–(7) for ζ = jw.

Example 1. Consider the case where δ̂1 = 0, and λ∞ is constant, i.e., no time-varying
macroeconomic indicators are present. In this setting, the repayment timing process (Ti, i ≥
1) is independent of the relative-repayment process (Ri, i ≥ 1). The intensity λs, for s ∈
[t, t+ τ ], is then

λs = λ∞ + (λt − λ∞)e−κ(s−t) +
∑

θm∈(t,s]

δ>2 ∆aθme
−κ(s−θm),

where the current intensity λt is known. Under the above assumptions, the inverse Fourier
transform in Eq. (9) can be obtained indirectly by calculating the probability mass function
of Nt+τ −Nt via evaluating the derivatives of

E[ζ(Nt+τ−Nt)|Ft] = exp
[
−∆α̂t,t+τ −∆β̂>t,t+τX̂t +

m̄∑
m=m

¯

β̂>θm δ̂2∆aθm

]
, (10)

at ζ = 0, where X̂t = [Nt, λt]>, and (α̂, β̂) solves the ODE in Prop. 1 with the boundary
condition (α̂t+τ , β̂t+τ ) = (0, log(ζ)ê1). Thus,

α̂s =
ζ − 1

κ
λ∞

(
e−κ(t+τ−s) − 1 + κ(t+ τ − s)

)
,

β̂s =

[
log(ζ)

ζ − 1

κ

(
1− e−κ(t+τ−s))

]
,

for all s ∈ [t, t+ τ ]. The argument of the exponential function in Eq. (10) is therefore equal
to the area under λs when s ∈ [t, t+ τ ], where α̂t represents the area generated by the fixed
part of λ (i.e., long-run steady-state λ∞) while β̂t and β̂θm represent the area contributed by
the transient parts (i.e., the intensity’s current value λt and the jumps δ̂2∆aθm). Denoting
the cumulative distribution function (CDF) of Qi by FQ, we have

Πt,t+τ (B/Bt) =
∞∑
n=1

P
{
Nt+τ −Nt = n

}
F ∗nQ

(
log(1− B

Bt

)
)
,

in which the counting process follows a Poisson distribution,

Nt+τ −Nt ∼ Pois
(
λ∞τ +

1− e−κτ

κ
(λt − λ∞) +

m̄∑
m=m

¯

1− e−κ(t+τ−θm)

κ
δ>2 ∆aθm

)
,

and F ∗nQ is the n-fold convolution of FQ. In the general setting, α̂t and β̂t can be interpreted
in the same way.14 �

14The method used in this example for calculating the inverse Fourier transform of Eq. (9) can be ex-
tended to the general setting by discretizing the Qi. This approach is used in Sec. 5.2.2 to avoid numerical
complications (Gibbs effect) that may arise when computing the DCS.
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3.3 Account Valuation

Given a description of the repayment process based on information up to the present (Ft)
and the action process a, with scheduled interventions ∆aθm at times θm ∈ (t, t+ τ ], we are
now interested in determining the expected τ -horizon present value of an account, denoted
by Vt,t+τ (a).

Proposition 3 (Account Valuation). Let ρ be a discount factor. The expected τ -horizon
present value of an account with outstanding balance Bt is

Vt,t+τ (a) = Bt

∫
(t,t+τ ]

e−ρ(s−t)dνt(s|a); (11)

the cash-flow measure νt(s|a) represents the expected cumulative repayment over (t, t+ s]:

νt(s|a) = 1− e−∆α̂t+τ−s,t+τ−∆β̂>t+τ−s,t+τ X̂t+
∑
θm∈(t,t+s] β̂

>
τ−s+θm δ̂2∆aθm , (12)

where (α̂, β̂) is the solution to the initial-value problem (6)–(7) for ζ = 1.

Example 2. Under the assumptions of Ex. 1, the cash-flow measure of Eq. (12) becomes

νt(s|a) = 1− e−r̄λ∞s−
r̄
κ

(1−e−κs)(λt−λ∞)−
∑
θm∈(t,t+s]

r̄
κ(1−e−κ(t+s−θm))δ>2 ∆aθm ,

where r̄ , E[Ri] is the expected relative repayment. For any given discount factor ρ, one can
then obtain the account value by calculating the integral in Eq. (11) numerically. From an
optimization perspective, it is interesting that taking a more forceful action at the scheduled
time, or alternatively, taking a given action earlier, leads to a first-order stochastically dom-
inant shift of the cumulative repayment distribution, resulting in a larger cash-flow measure
(Kwieciński and Szekli 1991). The corresponding expected benefits in terms of account value
may be offset by the higher cost of a larger action as well as the time value of money of the
capital expenditure required to finance the additional or earlier collection effort. Chehrazi
et al. (2014) investigate this tradeoff in a general infinite-horizon framework. �

4 Model Identification

Consider now the problem of identifying the model parameters for a group of k̄ accounts.
For each account k in the portfolio K = {1, . . . , k̄}, account-specific data is available over
the study interval [0, hk], with horizon hk ≥ τ . The data includes the repayment history
Nk = (T ki , R

k
i , i ≥ 1) and a process ak of scheduled account-treatment actions. Relevant for

all accounts in the portfolio K is the group-covariate process X whose path is also observed
during the study interval [0, hk], k ∈ K.

The tuple of model parameters, ϑ = [ϑλ;ϑX ], has separate entries for the intensity process
(ϑλ) and for the group-covariate process (ϑX). Since the dynamics of the group-covariate pro-
cess do not depend on ϑλ, the group-covariate-process parameter vector ϑX can be estimated
based on the observed sample path for X and independently of the observed repayment pro-
cess Nk and the parameter vector ϑλ. By contrast, the estimation of ϑλ depends on ϑX
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(for a given realization of X); however, this dependency is only through the constraints that
ensure positivity of the intensity process (see Prop. A1). These constraints, together with a
goodness-of-fit condition, bound the domain Θλ of feasible ϑλ but otherwise do not affect the
estimation objective (the likelihood function or a GMM-loss). Hence, a sequential estimation
procedure, identifying first ϑX and then ϑλ, while computationally advantageous is no less
efficient than an analytically more complex joint estimation of ϑ.

4.1 Estimation of the Group-Covariate Process

The estimation of an affine diffusion process Xt with parameter tuple ϑX = [µ, σσ>] has
been discussed extensively in the literature on dynamic asset pricing (Singleton 2001). The
methods considered there are based on either maximum-likelihood estimation (MLE) or the
generalized method of moments (GMM). They are usually developed for specific financial
applications, given a sample of Xt (or dependent variables such as prices and/or yields).
While in our application, both MLE and GMM can be used to obtain an estimate ϑ̃∗X of ϑX ,
GMM is often preferred, since knowledge about the CCF for affine (jump-)diffusion processes
(see Prop. A2) can be used to develop computationally tractable and asymptotically efficient
estimators.15

4.2 Estimation of the Repayment Process

Conditional on the estimate ϑ̃∗X for the model (3) of the group-covariate process, the identifi-
cation of the repayment process N = (Ti, Ri, i ≥ 1) can be accomplished in two steps: in the
first step, we estimate the distribution FR for the relative-repayment process (Ri, i ≥ 1); in
the second step, we estimate ϑλ by fitting the intensity process λt to the observed repayment-
timing process (Ti, i ≥ 1). The two steps of the procedure are detailed in turn.

Step 1: As an estimate of FR we use the empirical CDF

F̃R(r) =

∑k̄
k=1

∑N k
hk

i=1 1{Rki≤r}∑k̄
k=1N k

hk

,

given the data (Rk
i , 1 ≤ i ≤ N k

hk
)k̄k=1, taking into account Eq. (1). The i.i.d. assumption

(or rather modeling choice) in Sec. 2.1 implies the consistency and unbiasedness of this
nonparametric estimate.

Step 2: The parameter ϑλ = [λ∞, κ, δ1, δ2] is estimated using two alternative methods:
MLE and GMM; the latter is implemented via prediction-error minimization (PEM). The
operational purpose of the repayment-process model determines which method is preferable.
While MLE is asymptotically efficient, using the model parameters that maximize the like-
lihood of the observed data will not necessarily lead to a decision that minimizes the loss in
business terms. In the presence of a modeling error,16 GMM often provides better out-of-

15The stationarity and ergodicity of the affine (jump-)diffusion processes required for establishing consis-
tency and asymptotic behavior of MLE and GMM estimators are discussed by Glasserman and Kim (2010)
and Zhang and Glynn (2012).

16Modeling errors cannot be eliminated in practice, since for any finite amount of data there exist different
models, each of which cannot be rejected—at a given level of statistical significance.
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sample results, since appropriate moment conditions can be used to construct loss functions
that are closely related to business objectives. This observation is the underlying idea of
recent investigations in operational statistics and robust estimation where model estimation
and performance optimization are combined (Besbes et al. 2010; Chehrazi and Weber 2010).

Maximum-Likelihood Estimation (MLE). The joint probability density function for the ar-
rival times (Ti, 1 ≤ i ≤ Nt) of the repayment process N can be derived by establishing
a link between the conditional density function of the interarrival times and the intensity
process (Rubin 1972).17 This leads to a compact expression for the log-likelihood function
of (T ki , 1 ≤ i ≤ N k

hk
),

L
(
(T ki , 1 ≤ i ≤ N k

hk)
∣∣(Xs, s ∈ [0, hk]), (Rk

i , 1 ≤ i ≤ N k
hk), ϑ̃λ

)
=

−
∫ hk

0

λks(ϑ̃λ)ds+

∫ hk

0

ln
(
λks−(ϑ̃λ)

)
dN k

s , (13)

where the estimated intensity process λks = λks(ϑ̃λ), in analogy to Eq. (2), is given by

dλks = κ̃(yk)
(
λ̃∞(Xs)− λks

)
ds+ δ̃>1 (yk) dJkt + δ̃>2 (yk) dakt , s ∈ R+,

with corresponding parameter estimate ϑ̃λ = [λ̃∞, κ̃, δ̃1, δ̃2], for any account k ∈ K. The
maximum-likelihood estimator ϑ̃∗λ is then the ϑ̃λ that maximizes Eq. (13).

Generalized Method of Moments (GMM). As an alternative to MLE, we consider an estimator
that minimizes a loss function that is in accordance with a business-relevant measure such
as the expected present value of an account. For any given prediction horizon τ , time
t ≤ hk − τ , and parameter estimate ϑ̃λ, Prop. 3 yields the expected present value of any
individual account k: V k

t,t+τ (a
k|ϑ̃λ) = E[

∑
i e
−ρTki Zk

i 1{t<Tki ≤t+τ}|Ft, a
k, ϑ̃λ]. The model can

then be identified by choosing an estimate ϑ̃∗λ,t that minimizes the square deviation between
model prediction and observed data, so

ϑ̃∗λ,t ∈ arg min
ϑ̃λ∈Θλ

{∑
k∈K

(
V k
t,t+τ (a

k|ϑ̃λ)− vkt,t+τ
)2

}
, (14)

where vkt,t+τ =
∑

i e
−ρTki Zk

i 1{t<Tki ≤t+τ} is the observed τ -horizon value of the k-th account.
This GMM criterion is appropriate when valuation, either at the account level or the port-
folio level, is of interest (for example when pricing uncollectable accounts, so-called “dead-
reserves,” for debt leasing). As detailed in Sec. 5, MLE and GMM provide similar structural
insights about the repayment process, and they both exhibit a similar out-of-sample scoring
performance. However, the valuation error (see Eq. (15)) of the GMM estimator is consid-
erably smaller (by about 50 percent) than that of MLE (see Sec. 5.2.1). In applications
with limited data, such performance improvements—as well as the built-in robustness with
respect to modeling error—often outweigh the loss in asymptotic efficiency, thus rendering
GMM-based estimation a viable alternative to MLE.

Remark 2. Both MLE and GMM require observing Xt over the entire study interval. In
practice, some group covariates may only be observed at discrete time instances. In such a

17The likelihood function can also be obtained by a change of measure (Giesecke and Schwenkler 2012).
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Attributes Min Max Avg

yk
[ Placement balance [$] 500 1500 945

FICO score 551 700 608
hk Days in collections 8 550 208
N k
hk Payment count 0 16 1.86

ck1 Phase 1 commission rate [%] 7 23 13.6

θk2
Transition to the 2nd
collection phase [day]

30 515 151

ck2 Phase 2 commission rate [%] 8 45 23.5

(a)
(b)

Figure 1: Description of the dataset: (a) Summary statistics; (b) Distribution of commission
rates.

case, one can construct the relevant continuous sample path by interpolating between the
observed values. Alternatively, one can work with an intensity process Λt specified under
the internal history of N by taking the expectation of λt with respect to X, thus removing
the dependence of λt on the sample path of X (Brémaud 1981, Thm. 14). This expectation
can be evaluated explicitly by adapting Prop. A2.18

5 Applications

We now employ the framework developed thus far to estimate the collectability and the
value of delinquent credit-card accounts. For this, we use a large dataset of account-specific
credit-collections data and identify our model using both MLE and GMM estimation meth-
ods, as detailed in Sec. 5.1. We then compare the two methods and highlight the operational
gains that can be obtained from the latter when adapting it to business-relevant objectives
(Sec. 5.2.1). The DCS constructed in Prop. 2 is used to determine the payback probabil-
ity and value accounts (Sec. 5.2.2). The out-of-sample prediction performance of DCS at
different instances of the collections process is illustrated by Receiver Operating Charac-
teristic (ROC) curves, and compared to a bank-internal scoring (BIS) system (Sec. 5.2.3).
Finally, the model is used to optimize commission rates for debt-leasing agencies in a typical
two-phase external collections process (Sec. 5.2.4).

5.1 Dataset and Model

The available dataset contains approximately 6,600 delinquent accounts with a total out-
standing balance of $6 million, placed in collections between 2004 and 2006; see Fig. 1a for
summary statistics. To evaluate the prediction performance of the model we limit account-
specific covariates y to two attributes: outstanding balance at placement and pre-default

18Specifically, Λt solves dΛt = κ(y)(λ∞(x̄t) − Λt) dt + δ>1 (y) dJt + δ>2 (y) dat, where x̄t , E[Xt|F0] solves
dx̄t = µ(x̄t) dt.
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FICO score.19 We consider two high-level collection actions: assigning an account to a new
collection agency (effectively starting a new collection phase) and setting commission rates.
In our dataset, an account’s repayment behavior is tracked over two collection phases. In
order to avoid conflict of interest, e.g., agencies’ artificially delaying collections, a commission
rate is increased only when an account is reassigned to a different agency. Hence, the process
of scheduled account-treatment actions a includes at most only two interventions (m̄ = 2):
∆aθ1 = [1, c1]> where θ1 = 0 is the placement time for phase 1; and ∆aθ2 = [1, c2 − c1]>

where θ2 denotes the placement time for phase 2 (if applicable). The distributions of account-
specific commission rates c1 and c2 for phase 1 and 2, respectively, are summarized in Fig. 1b;
some accounts were transitioned to the second phase (shaded dark), on average after 120
days of nonpayment in the first phase. The dashed lines illustrate the average commission
rates for the two collection phases.

In addition to the account-specific covariates discussed earlier, our dataset includes a BIS
derived from quasi-static regression models (e.g., Crook et al. 2007) and heuristic data-mining
methods; it provides a natural benchmark. Since the BIS is often precomputed at the outset
for later use, we enhance its dynamic performance using Bayesian updating, termed ‘updated
BIS’ (uBIS), based on the observed repayment history for each account.

Repayment-Process Discretization. The repayment process (T ki , Z
k
i , 1 ≤ i ≤ N k

hk
) of

account k is approximated by lump-sum payments Zk
i at the collection-report times T ki ,

where Zk
i corresponds to the sum of all repayments between T ki−1 and T ki . Fig. A1 shows

the empirical CDF of the relative repayments, F̃R. Pearson’s chi-squared test rejects the
hypothesis that the Rk

i are independent at the account level (i.e., for a fixed k). In the
available dataset, the average number of payments is small (approximately 2). Hence, the
hypothesis that the Rk

i are identically distributed cannot be tested at the account level.
At the aggregate level, when pooling the relative-repayment sequences for all k ∈ K, the
Empirical Generalized Runs test does not reject the hypothesis that the Rk

i are i.i.d.20

Account Stratification. The dataset can be split into random “training” and “testing”
subgroups by stratifying either across time or across accounts. In the former version, the
model is trained over the initial portion (e.g., 60 percent) of the study interval and the
out-of-sample performance is determined over the remaining length. This mode of analysis
is attractive when a decision maker is interested in the optimal account-specific timing and
design of a settlement offer. In the latter version, the dataset is divided into training and
testing subgroups across accounts, so parameters can be identified over the full length of
the collections process. This is useful when a decision maker is interested in valuing a
portfolio of accounts (at the aggregate level, including overlapping generations). The latter
version is adopted here for account-valuation and collection-action optimization. Thus, 60%
of accounts (3,757) were randomly selected for training and the remaining 40% of accounts
(2,504) for testing. In these two subgroups, at least one payment was made by 83% (3,115)
and 84% (2,096) of all accounts, respectively.21

19Bank-internal datasets usually contain additional attributes such as credit limit, interest rate, utilization
rate, and past-due/personal-bankruptcy events. In our implementation, both the placement balance and the
pre-default FICO score are linearly mapped to [0, 1].

20The corresponding values of the EGR test statistics T̃1,n(S1), T̃1,n(S2), T̃∞,n(S1), and T̃∞,n(S2) as defined
in Cho and White (2011) are 0.0064, 0.0023, 0.597, and 0.1846, respectively, which are all majorized by the
corresponding critical values at the 1%-level.

21The treatment of data censoring due to the fact that full repayment may be observed infrequently in
typical repayment data is discussed in Appendix A.
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y
δ̃∗1 δ̃∗2 λ̃∗∞

κ̃∗ δ̃∗11 δ̃∗12 δ̃∗21 δ̃∗22 λ̃∗∞,0 λ̃∗∞,1

1 (×10−2)
0.522 0.400 0.449 0† 0.778 0.288 -6.258

(0.066) (0.126) (0.300) (0.086) (0.617) (0.047) (1.264)

B0 (×10−2)
0.291 1.356 -0.370 0† -0.213

N/A N/A
(0.086) (0.185) (0.470) (0.131) (0.985)

FICO (×10−2)
0.913 1.311 -0.079 0† 12.584

N/A N/A
(0.102) (0.211) (0.514) (0.184) (1.399)

Table 1: Parameter estimates for MLE (incl. standard error); 0 ≤ 0† ≤ 10−3.

y
δ̃∗1 δ̃∗2 λ̃∗∞

κ̃∗ δ̃∗11 δ̃∗12 δ̃∗21 δ̃∗22 λ̃∗∞,0 λ̃∗∞,1

1 (×10−2)
1.976 0.777 0.442 0† 0† 1.163 -25.266

(9.032) (14.607) (24.441) (6.738) (13.246) (2.111) (65.960)

B0 (×10−2)
0.128 3.596 -0.442 0† −0†

N/A N/A
(13.058) (15.440) (28.019) (2.552) (8.487)

FICO (×10−2)
0.262 -0.776 −0† 0† 13.363

N/A N/A
(13.888) (12.945) (12.183) (20.076) (58.202)

Table 2: Parameter estimates for GMM (incl. standard error); 0 ≤ 0† ≤ 10−3.

Parameter Estimation. The average rate on one-month negotiable certificates of deposit
(CD), taken from the Federal Reserve Bank’s H.15 periodic reports, serves as group-covariate
process Xt. As noted in Sec. 5.1, the testing and training subgroups are tracked over the
same study period: 2004 to 2006. To avoid the bias that would result from including study-
period samples of X in the estimation of the intensity parameter ϑλ (they should remain
unknown for the testing subgroup), only observed covariates prior to t = 0 (i.e., 2004) are
taken for the estimation of ϑX , while Λt (see Remark 2) is used to estimate ϑλ.

22 Given
ϑ̃∗X , the intensity parameter ϑλ is estimated by both MLE and GMM methods. Table 1 and
Table 2 summarize the results and also provide the (asymptotic) standard error (SE) for
each estimator.23 The validity of the model is confirmed by the Cramér-von Mises (CVM)
goodness-of-fit test (see Appendix A for details).24 The CVM-test rejects the model when δ1

is forced to zero, which implies that the intensity process is indeed sensitive to the jump
process Jt, thus justifying empirically the use of a self-exciting point process as a model for
the stochastic repayments.

Interpretation. The first three components of ϑλ = [κ, δ1, δ2, λ∞] are affine functions of
the account-specific covariate vector y, while the last component is an affine function of the
group covariate Xt. One can compare MLE and GMM estimates by examining the sign and
magnitude of the coefficients for each affine function. The sign determines the directional
dependence of the considered function with respect to the changes in the corresponding
covariate. For example, the sign of λ̃∗∞,1 is negative for both GMM and MLE. This suggests

22Based on 420 monthly samples for 1-month negotiable CDs, from 1970 to 2004, an estimate of (µ0, µ1)
is obtained: (µ̃∗0, µ̃

∗
1) = (3.70× 10−5,−6.089× 10−4) with the standard error of (3.75× 10−5, 6.828× 10−4)

calculated according to Hansen (1982).
23In our implementation λ0− = Λ0− = 0. This corresponds to the notion that if a delinquent account

is not placed in collection, there will be no repayment. The SE of the MLE estimates are obtained by
approximating the Fisher information (Berndt et al. 1974). The GMM estimates are derived by taking
ρ = 0, t = 0, and τ = 120 days (see Eq. (14)), with SE derived according to Hansen (1982).

24The values of the CVM-test for the MLE and GMM parameter estimates in the testing subgroup are
0.403 and 0.441, respectively. Both are majorized by the 5%-level critical value of 0.461.
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that as the interest rate increases, λ̃∗∞ decreases resulting in a smaller repayment probability
and thus a lower account value. Similarly, the sign of the coefficient of κ̃∗ for the FICO score
is positive for both estimation methods. Thus, with increasing creditworthiness the inertia of
the intensity process decreases, effectively shortening the memory of the repayment process.
In other words, for a larger FICO score the past becomes less predictive of the future.
Indeed, if a large FICO score was a good indicator for repayment behavior, the account
should not have ended up in collections. The value of κ̃∗ also increases with the outstanding
balance B0 for both GMM and MLE estimates. This means that a higher placement balance
also decreases the memory of the repayment intensity. When the balance is high, the current
financial status becomes a better predictor than the account holder’s past financial status.

While the signs of MLE and GMM estimates tend to be consistent, their magnitudes may
differ in part because coefficients can offset each other. Instead of directly comparing the
latter, we therefore compare the values of the affine functions for a (fictitious) account with
average covariate vector yavg for the considered account segment (low pre-default balance,
high FICO score). Table 3 shows that for both MLE and GMM there is a large difference
in the sensitivities of the repayment-arrival intensity in Eq. (2) to the different components
of the repayment process Jt = [Nt,Rt]

>. Specifically, δ̃∗11(yavg) � δ̃∗12(yavg), so to predict
repayment behavior in this segment the willingness-to-repay (Nt) proves significantly more
important than ability-to-repay (Rt).

25 This suggests that testing actions with the potential
to boost an account holder’s willingness-to-repay, such as filing a lawsuit or offering credit
reinstatement upon full repayment, may constitute useful business experiments for this seg-
ment. For both MLE and GMM, the account-treatment sensitivities vary across actions
(δ̃∗21(yavg) � δ̃∗22(yavg)): for the segment under consideration the mere placement of an ac-
count to a new agency proves less important than an increase in the commission rate. The
repayment intensity λt in the SDE (2), and therefore also Λt (see Remark 2), is sensitive to
a change of the commission rate; this sensitivity increases in the FICO score and diminishes
with greater placement balance B0 (see the coefficients of δ22 in Table 1 and Table 2).

5.2 Performance Analysis

In what follows, we compare the performance of the model for MLE against GMM. We then
illustrate the computation of the dynamic collectability score as the backbone of the method.
A comparison of the prediction performance for the two model-identification methods follows
before we show how to use it for optimizing account treatment by setting commission rates.

5.2.1 MLE vs. GMM

The two identification methods yield similar intuition about repayment behavior in the seg-
ment K. As shown in Sec. 5.2.3, their prediction performance is also similar. However,
significant performance differences may arise for business-relevant objectives that are closely
related to the PEM moment conditions. For example, when aggregating the expected val-
ues of different accounts in a segment, one obtains a business-relevant objective (“segment

25Because the accounts have low balance and high pre-default FICO scores, the group is considered “highly
collectable.” This may not hold for other segments, e.g., for low-FICO-score/high-balance accounts.
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δ̃∗1(yavg) δ̃∗2(yavg)

κ̃∗(yavg) δ̃∗11(yavg) δ̃∗12(yavg) δ̃∗21(yavg) δ̃∗22(yavg)

MLE 0.010 0.015 0.003 0† 0.056
GMM 0.021 0.021 0.002 0† 0.052

(a)

Relative
Valuation Error

Training
MLE 11.8%
GMM 5.9%

Testing
MLE 11.7%
GMM 5.7%

(b)

Table 3: MLE vs. GMM: (a) Average model parameters; (b) Relative valuation error.

value”), for which the bank seeks accurate forecasts. The corresponding relative valuation
error (RVE) is

RVE =

∣∣∣∣∣
∑k̄

k=1 V
k
t,t+τ (a

k)−
∑k̄

k=1 v
k
t,t+τ∑k̄

k=1 v
k
t,t+τ

∣∣∣∣∣ . (15)

As shown in Table 3b (for collection phase 1, with ρ = 0, t = 0, and τ = 120 days)
the RVE for the GMM method, implemented via PEM, clearly outperforms the RVE for
MLE. The main reason for the performance difference is the presence of modeling errors (see
footnote 16). As noted at the end of Sec. 5.1, the repayment-process model responds in a
natural way to the various outside forces, such as repayment events or treatment actions.
The linear intensity dynamics and the assumed i.i.d. relative repayment amounts should be
considered a reasonable first-order approximation of reality.

5.2.2 Payback Probability

The DCS summarizes the probability of receiving an aggregate repayment in excess of a
given threshold B over a given interval (t, t + τ ]. Fig. 2 depicts this repayment probability
in shades of grey with corresponding iso-quantile lines for a sample account (in the testing
subgroup).

(a) (b)

Figure 2: Cumulative payback probability Πt,t+τ (B/Bt) for a sample account (B0 = $884.13,
FICO = 555) together with account value Vt,t+τ (a)/Bt (dashed line), for τ ≤ 42 days.

The DCS varies with time t. In the study period [0, 112] days, the account in Fig. 2 made two
repayments, $160.77 (18.2%) at T1 = 22 days and $150 (20%) at T2 = 53 days. In Fig. 2a,
the payback probability Πt,t+15 days(40%) for repayment of at least 40% of the remaining
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outstanding balance over the next τ = 15 days, conditional on the information available up
to the current time t = 35 days, is approximately 10%. In Fig. 2b, this probability, based on
information of up to t = 70 days, has increased to approximately 15%. This is primarily due
to receiving a repayment (at T2 = 53) which updates both the account holder’s willingness-to-
repay and ability-to-repay. The dotted lines indicate the expected values Vt,t+τ , normalized
to the interval [0, 1], for t ∈ {35, 70} days and τ ≤ 45 days. The DCS not only incorporates
real-time information, it is also flexible with respect to variations of prediction horizon and
payback threshold, the desired values of which can be readily substituted. Thus, at each
time in the collections process the collections manager obtains a dynamic account valuation
based on all available information.

5.2.3 Prediction Performance

The predictive accuracy of the DCS, for both MLE- and GMM-identified model parameters,
is illustrated by the ROC curves in Fig. 3, where account value is used for ranking based on
collectability. The ROC curves for the BIS (dotted) and the uBIS (dashed) serve as baseline
reference. The true-positive rate corresponds to the percentage of payers who are identified
correctly by each model. A “payer” denotes an account with at least one observed payment
in the interval (t, t+τ ] with τ = 45 days. As shown in Fig. 3, the DCS performs significantly
better than both BIS and uBIS, even though it uses considerably less information. Table 3d
provides the area under the ROC curves (AUC) for each classifier, equivalent to the proba-
bility that a randomly chosen positive instance is ranked above a randomly chosen negative
instance.

5.2.4 Treatment Optimization

Because the dynamic repayment model includes account-treatment actions, it is possible to
use the account valuation in Prop. 3, as a function of the action process at = [at,1, at,2]>, for
treatment optimization. More specifically, the bank’s net revenues depend on the account-
specific commission rates cm in the collection phases m ∈ {1, 2}. We limit attention here to
the optimization of the commission rate at,2, represented by (c1, c2).

A typical account in the dataset has at time θ1 = 0 a constant commission rate of c1 = 15% in
phase 1 and is moved after θ2 = 120 days without full payment to phase 2 of the collections
process at c2 = 25% commission. We compare these modal rates with optimized model
predictions, given a capital cost of ρ = 10%. The net value, over the time interval (t, t + τ ]
with t = 0 and τ = 360 days, as a function of FICO score and outstanding balance, is shown
in Fig. 4a; one observes that, per outstanding dollar, accounts with lower balances are more
valuable. Furthermore, account holders with higher pre-default FICO scores are more likely
to pay, so accounts with both a high FICO score and a low outstanding balance are among
the most collectable (on a per-dollar basis). Fig. 4b illustrates the marginal gain/loss when
the commission rates go up, for each phase m ∈ {1, 2}. All of the curves are unimodal with
a peak in the neighborhood of FICO = 550 (not shown for two curves). Thus, the marginal
net yield increases in the FICO score until account quality is sufficiently high, so the price
paid for additional collection effort no longer warrants the difference in collection yield.

Fig. 5a shows the net revenue of an account (B0 = $1,000, FICO = 600) as a function of
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(a) (b)

(c)

Week (t/7) 0 8 16 32

DCS (MLE) 0.507 0.677 0.773 0.849
DCS (GMM) 0.511 0.675 0.746 0.46

BIS 0.561 0.536 0.507 0.615
uBIS 0.559 0.606 0.515 0.593

Gain (MLE) -9.6% 11.6% 50.0% 37.9%
Gain (GMM) -8.9% 11.4% 44.8% 37.5%

(d)

Figure 3: Scoring performance: (a)–(c) ROC curves at different times in the collections
process; (d) AUC.

the commission rates c2 ≥ c1, with maximum at (c∗1, c
∗
2) = (30%, 30%). The symmetry of

the commission structure follows from the underlying simplification that the agencies are
homogenous. Indeed, to avoid initially overpaying for collection effort and a premature
termination of the process, necessarily c∗2 ≥ c∗1. Because the two collection agencies are
homogenous, the phase-2 commission c2 cannot be strictly larger than the phase-1 commis-
sion c1 at the optimum.26

Based on this, it is possible to optimally price an account for leasing it out to collection
agencies. Let c = c1 = c2 denote a symmetric commission structure. The optimal commis-
sion rate c∗ can be obtained analogously to the standard monopoly pricing rule (see, e.g.,
Tirole 1988) by viewing p = 1 − c as the price (i.e., unit revenue) for an account leased to
a collection agency. Since the outstanding balance is sunk at the time of placement, the
opportunity cost of collection is zero, and the realized value (i.e., revenue) for the bank
becomes (1− c)V0,τ (a). Given the price elasticity of the collection value,

ε(c) = − 1− c
V0,τ (a)

∂V0,τ (a)

∂(1− c)
= − p

V0,τ (a)

∂V0,τ (a)

∂p
,

we obtain that
ε(c∗) = 1 (16)

26In practice, the agency in the second phase is often more specialized (e.g., a law firm) and therefore
requires a higher commission rate because of its higher collection cost.
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(a) (b)

Figure 4: (a) Net revenue and (b) expected gain from commission increase, as a function of
FICO for B0 ∈ {$500, $1,500}, given an initial commission structure of (c1, c2) = (15%, 25%).

(a) (b)

Figure 5: (a) Net revenue as a function of the commission structure (c1, c2); (b) Unit revenue
V0,τ (a)/B0 (dashed line) and marginal net revenue (solid line) for a symmetric commission
structure (c, c) in terms of the equivalent price p = 1− c.

at the optimum. It is therefore best for the bank to charge a commission rate that sets
the price elasticity of the collection value equals 1. Fig. 5b illustrates the monopoly pricing
rule (16), implying a revenue-maximizing price of p∗ = 1− c∗ = 70% in the example.

6 Conclusion

The dynamic collectability score (DCS) method developed in this paper can be viewed as the
backbone of collections optimization. In contrast to standard bank-internal scores, the DCS
reflects the actual repayment probability conditional on a repayment threshold, a collection
horizon, and scheduled account-treatment actions. The DCS is therefore a very flexible
measure which can be tailored for a range of applications, such as the following six examples.
First, it can be used in its base version as a forecasting and scoring tool, which by itself
outperforms BIS methods in terms of the classic “payer” versus “non-payer” classification,
as shown in Sec. 5. Second, the DCS figures prominently in the valuation formula of Prop. 3.
Third, because the DCS is determined conditional on an action sequence, it can be used
to optimize the collections process. The key difference from standard methods is that our
model allows for a simple forward simulation of repayment processes. The details of the
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associated stochastic optimization problem are discussed in a companion paper (Chehrazi
et al. 2014). Fourth, the DCS valuation formula can be used to optimize compensation
for collection agencies in terms of their optimal commission rate, at the account level. If
the commission is tied to the DCS, then, because of the increased efficiency in allocating
effort, both the collection agency and the credit-card issuing bank stand to gain. Fifth,
because of the dynamic nature of the DCS, it is instrumental in the decision of when and
how to settle a credit-card account. Last but not least, more resolution and reliability in the
valuation of delinquent accounts also improves the life-cycle assessment of account value, and
thus ultimately enhances the quality of a bank’s underwriting decisions. Hence, by backward
induction, a functioning DCS method can be expected to impact the entire account life-cycle.

Appendix A: Analytical Details

Feasibility Domain.

Let µ(x) ≡ µ0 + µ1x with (µ0, µ1) ∈ RnX × RnX×nX , σ(x) ≡ Σv(x) with Σ ∈ RnX×nX

nonsingular (Duffie and Kan 1996), and v(x) ≡ diag(u
1/2
1 (x), . . . , u

1/2
nX (x)) with

ul(x) ≡ ul,0 + u>l,1x,

where ul,0 ∈ R and ul,1 ∈ RnX , for all l ∈ {1, . . . , nX}. The domain D of Xt can be described
as a polyhedron,

D = {x ∈ RnX : min{u1(x), . . . , unX (x)} ≥ 0} .

Setting λ∞(x) ≡ λ∞,0 + λ>∞,1x, and denoting

u0 =

 u1,0
...

unX ,0

 and u1 =

 u>1,1
...

u>nX ,1

 ,
the following result provides conditions that ensure the positivity of the intensity process λt.

Proposition A1 (Positivity of Intensity). Given initial data (λ0, X0) in R++ × D, the
intensity process λt is positive27 if and only if there exists a vector γ ∈ RnX

+ such that
λ∞,0 ≥ γ>u0 and λ>∞,1 = γ>u1.

Proof. To ensure the positivity of λt it is necessary and sufficient to ensure that dλt/dt
is positive at the boundary, where λt = 0. The latter holds if and only if λ∞(x) ≥ 0 on D,
given that κ, δ1, δ2 ≥ 0 (as required by the model). We therefore need to show that

λ∞(x) = λ∞,0 + λ>∞,1x ≥ 0, ∀x ∈ D = {x ∈ RnX : u0 + u1x ≥ 0},

if and only if G = {γ ∈ RnX
+ : λ∞,0 ≥ γ>u0 and λ>∞,1 = γ>u1} 6= ∅.

Sufficiency: If there exists γ ∈ G, then

λ(x) = λ∞,0 + λ>∞,1x = λ∞,0 + γ>u1x > γ>
(
u0 + u1x

)
≥ 0,

27Positivity is required only almost everywhere, i.e., everywhere except for a zero-measure set of times.

23



for any x ∈ D.

Necessity: Assume (λ∞,0, λ∞,1) is such that λ∞(x) ≥ 0 for any x ∈ D. We now show that G
is nonempty. To simplify the exposition, we restrict attention to the case where u1 has full
rank.28 The following intermediate result implies the nonemptiness of G.

Claim: There exists γ ∈ RnX
+ such that λ>∞,1 = γ>u1. Proof: Since u1 has full rank, there

exists γ ∈ RnX such that λ>∞,1 = γ>u1. It is therefore enough to show that γ ≥ 0. If this
is not true, then there is a unit vector el in RnX with γ>el < 0. Using the Gram-Schmidt
process if necessary, it is possible to find a vector xl ∈ RnX such that u1xl = el. For any
scalar ϕ > 0 and x ∈ D, one can then conclude x+ϕxl ∈ D while at the same time for ϕ large
enough λ∞(x+ ϕxl) = λ∞,0 + λ>∞,1x+ ϕγ>el becomes negative. This yields a contradiction,
and thus establishes the validity of the claim.

Since u1 has full rank, there exists x̂ ∈ D such that u0 + u1x̂ = 0. Using the claim, there
exists γ ∈ RnX

+ such that λ>∞,1 = γ>u1, whence

0 ≤ λ∞(x̂) = λ∞,0 + λ>∞,1x̂ = λ∞,0 + γ>u1x̂ = λ∞,0 − γ>u0.

Thus, one also obtains λ∞,0 ≥ γ>u0, which implies that γ ∈ G 6= ∅, completing our proof. �

Affine Jump-Diffusion Processes with Deterministic Jumps.

Consider the general case

dX̂t = µ̂(X̂t)dt+ σ̂(X̂t)dŴt + δ̂1dĴt + δ̂2dât, (17)

where Ŵt is a standard Wiener process in RnX̂ ; µ̂(x̂) = µ̂0 + µ̂1x̂ in which (µ̂0, µ̂1) ∈ RnX̂ ×
RnX̂×nX̂ ; σ̂(x̂)σ̂>(x̂) = σ̂0 +

∑nX̂
l=1 σ̂

l
1x̂l where

(
σ̂0, (σ̂

l
1)
nX̂
l=1

)
∈ RnX̂×nX̂ × RnX̂×nX̂×nX̂ ; Ĵ is an

RnĴ -dimensional pure jump process whose jumps ∆Ĵ are i.i.d., and its arrival intensity is
an affine function of X̂, of the form λ̂(X̂t) = λ̂0 + λ̂>1 X̂t with (λ̂0, λ̂1) ∈ R × RnX̂ ; â is a
deterministic, right-continuous jump process, whose jumps are at fixed, increasing arrival
times θ̂m, for m ≥ 1; and (δ̂1, δ̂2) ∈ RnX̂×nĴ × RnX̂×nâ . The following proposition provides a
semi-analytic expression for the transform

L(t,t+τ ](ρ̂0, ρ̂1, ζ̂, X̂) , E(e−
∫ t+τ
t ρ̂(X̂s) ds+ζ̂>X̂t+τ |Ft), (18)

where ζ̂ ∈ CnX̂ , ρ̂(x̂) = ρ̂0 + ρ̂>1 x̂ with ρ̂0 ∈ R, ρ̂1 ∈ RnX̂ .

Proposition A2 (Affine Transform). Let θ̂m, m ∈ {m
¯
, . . . , m̄}, denote the jump arrival

times of âs, for s ∈ (t, t + τ ], and let (α̂, β̂) be the (unique) solution to the initial-value
problem

˙̂αs + µ̂>0 β̂s + β̂>s σ̂0σ̂
>
0 β̂s/2 = ρ̂0 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂0, α̂(t+ τ) = 0, (19)

˙̂
βs + µ̂>1 β̂s + β̂>s σ̂1σ̂

>
1 β̂s/2 = ρ̂1 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂1, β̂(t+ τ) = ζ̂ , (20)

on [t, t+ τ ]. If the conditions

28A complete proof is available upon request. Important for the results in this paper is the sufficiency
of G 6= ∅ for the positivity of λt. The necessity provides a guarantee that the nonemptiness of G constitutes
a minimal requirement for the admissibility of the intensity process.
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(i) E
[∫ t+τ

0
‖ξ̂s‖ds

]
<∞, with ξ̂s , λ̂(X̂s)Ψ̂s(E[eβ̂

>
s δ̂1∆Ĵ ]− 1),

(ii) E
[(∫ t+τ

0
‖η̂s‖2 ds

)1/2
]
<∞, with η̂s , Ψ̂sβ̂

>
s σ̂(X̂s),

(iii) E
[
‖Ψ̂t+τ‖

]
<∞, with Ψ̂s , exp

[
α̂s + β̂>s X̂s −

∫ s
0
ρ̂(X̂ŝ)dŝ

]
,

hold, then

L(t,t+τ ](ρ̂0, ρ̂1, ζ̂, X̂) = exp

[
α̂t + β̂>t X̂t +

m̄∑
m=m

¯

β̂>
θ̂m
δ̂2∆âθ̂m

]
,

where ∆âs , âs − âs−.

Proof. Using the law of iterated expectations, Eq. (18) becomes

E
[
e−

∫ t+τ
t ρ̂(X̂s)ds+ζ̂>X̂t+τ

∣∣∣Ft

]
= E

[
e−

∫ θ̂m̄
t ρ̂(X̂s)dsE

[
e
−

∫ t+τ
θ̂m̄

ρ̂(X̂s)ds+ζ̂>X̂t+τ
∣∣∣Fθ̂m̄

]∣∣∣Ft

]
.

For s ∈ [θ̂m̄, t+ τ ], the process âs is constant, so X̂s exhibits affine jump-diffusion dynamics.
Thus, by Prop. 1 of Duffie et al. (2000),29

E
[
e−

∫ θ̂m̄
t ρ̂(X̂s)dsE

[
e
−

∫ t+τ
θ̂m̄

ρ̂(X̂s)ds+ζ̂>X̂t+τ
∣∣∣Fθ̂m̄

]∣∣∣Ft

]
= E

[
e
−

∫ θ̂m̄
t ρ̂(X̂s)ds+α̂(θ̂m̄)+β̂>

θ̂m̄
X̂θ̂m̄

∣∣∣∣Ft

]
(21)

where for s ∈ [θ̂m̄, t+ τ ]:

˙̂αs + µ̂>0 β̂s + β̂>s σ̂0σ̂
>
0 β̂s/2 = ρ̂0 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂0, α̂t+τ = 0,

˙̂
βs + µ̂>1 β̂s + β̂>s σ̂1σ̂

>
1 β̂s/2 = ρ̂1 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂1, β̂t+τ = ζ̂ .

Rewriting Eq. (21) in the form

E
[
e
−

∫ θ̂m̄
t ρ̂(X̂s)ds+α̂θ̂m̄

+β̂>
θ̂m̄
X̂θm̄

∣∣∣∣Ft

]
= E

[
e
−

∫ θ̂m̄
t ρ̂(X̂s)ds+α̂θ̂m̄

+β̂>
θ̂m̄

(X̂θ̂m̄
−δ̂2∆âθ̂m̄

)+β̂>
θ̂m̄
δ̂2∆âθ̂m̄

∣∣∣∣Ft

]
= e

α̂θ̂m̄
+β̂>

θ̂m̄
δ̂2∆âθ̂m̄E

[
e
−

∫ θ̂m̄
t ρ̂(X̂s)ds+β̂>

θ̂m̄
(X̂θ̂m̄

−δ̂2∆âθ̂m̄
)
∣∣∣∣Ft

]
,

one obtains that the effect of the deterministic jump factor â is decoupled from the dynamics

of X̂s for s ∈ [θ̂m̄−1, θ̂m̄]. Rewriting −
∫ θ̂m̄
t

ρ̂(X̂s)ds as −
∫ θ̂m̄−1

t
ρ̂(X̂s)ds −

∫ θ̂m̄
θ̂m̄−1

ρ̂(X̂s)ds, by

using the law of iterated expectations and again Prop. 1 by Duffie et al. (2000), one obtains

E
[
e−

∫ t+τ
t ρ̂(X̂s)ds+ζ̂>X̂t+τ

∣∣∣Ft

]
= e

α̂θ̂m̄
+β̂>

θ̂m̄
δ̂2∆âθ̂m̄E

[
e
−

∫ θ̂m̄−1
t ρ̂(X̂s)ds+α̌θ̂m̄−1

+β̌>
θ̂m̄−1

X̂θ̂m̄−1

∣∣∣∣∣Ft

]
,

(22)
where (α̌s, β̌s), for all s ∈ [θ̂m̄−1, θ̂m̄], is determined as solution of the initial-value problem

˙̌αs + µ̂>0 β̌s + β̌>s σ̂0σ̂
>
0 β̌s/2 = ρ̂0 + (1− E[eβ̌

>
s δ̂1∆Ĵ ]) λ̂0, α̌θ̂m̄ = 0,

˙̌βs + µ̂>1 β̌s + β̌>s σ̂1σ̂
>
1 β̌s/2 = ρ̂1 + (1− E[eβ̌

>
s δ̂1∆Ĵ ]) λ̂1, β̌θ̂m̄ = β̂θ̂m̄ .

29The result remains valid for (ρ̂0, ρ̂1) ∈ C× CnX̂ .
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Since the ODEs governing the dynamics of α̂s and β̂s on [θ̂m̄, t+τ ] and α̌s and β̌s on [θ̂m̄−1, θ̂m̄]
are identical, Eq. (22) simplifies to

E
[
e−

∫ t+τ
t ρ̂(X̂s)ds+ζ̂>X̂t+τ

∣∣∣Ft

]
= e

α̂θ̂m̄−1
+
∑m̄
m=m̄−1 β̂

>
θ̂m
δ̂2∆âθ̂m

× E

[
e
−

∫ θ̂m̄−1
t ρ̂(X̂s)ds+β̂>

θ̂m̄−1
(X̂θ̂m̄−1

−δ̂2∆âθ̂m̄−1
)

∣∣∣∣∣Ft

]
,

where (α̂s, β̂s) solves the initial-value problem

˙̂αs + µ̂>0 β̂s + β̂>s σ̂0σ̂
>
0 β̂s/2 = ρ̂0 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂0, α̂t+τ = 0, (23)

˙̂
βs + µ̂>1 β̂s + β̂>s σ̂1σ̂

>
1 β̂s/2 = ρ̂1 + (1− E[eβ̂

>
s δ̂1∆Ĵ ]) λ̂1, β̂t+τ = ζ̂ , (24)

for all s ∈ [θ̂m̄−1, t+ τ ]. Continuing the extension towards the left in the same manner yields

E
[
e−

∫ t+τ
t ρ̂(X̂s)ds+ζ̂>X̂t+τ

∣∣∣Ft

]
= e

α̂t+β̂>t X̂t+
∑m̄
m=m

¯
β̂>
θ̂m
δ̂2∆âθ̂m ,

where (α̂, β̂) solves the initial-value problem (23)–(24) on [t, t+ τ ]. �

Proof of Proposition 1. The proof follows from the proof of Prop. A2. Specifically, let
X̂t = [Qt, λt, X>t ]>, where

dQt = dQt,
dλt = κ(λ∞(Xt)− λt)dt+ δ>1 dJt + δ>2 dat,

dXt = µ(Xt)dt+ σ(Xt)dWt.

Then (referring to Table B1 in Appendix B for any extra notational definition) it is

µ̂0 =

 0
κλ∞,0
µ0

 ∈ R2+nX , µ̂1 =


0 0 0
0 −κ κλ>∞,1

0(nX×2) µ1

 ∈ R(2+nX)×(2+nX), (25)

λ̂0 = 0, λ̂1 = ê2 with êl the l-th standard Euclidean basis vector of R2+nX , and

δ̂1 =

 1 0 0
0 δ11 δ12

0nX×3

 ∈ R(2+nX)×3, δ̂2 =

 01×na
δ>2

0nX×na

 ∈ R(2+nX)×na . (26)

Futhermore, ∆Ĵ = [Q, 1, R]> and σ̂(x̂) = Σ̂v̂(x̂), with Σ̂, v̂(x̂) ∈ R(2+nX)×(2+nX) and

Σ̂ =

[
0(2×2) 0(2×nX)

0(nX×2) Σ

]
, v̂(x̂) =

[
0(2×2) 0(2×nX)

0(nX×2) v(x)

]
, (27)
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where Σ, v(x) ∈ RnX×nX are detailed at the outset of this appendix. Hence, one obtains

E[eζ(Qt+τ−Qt)|Ft] = L(t,t+τ ](0, 0, ζê1, X̂) ·L(t,t](0, 0,−ζê1, X̂)

= exp
[
−∆α̂t,t+τ −∆β̂>t,t+τX̂t +

m̄∑
m=m

¯

β̂>θm δ̂2∆aθm

]
,

which concludes the proof. �

Proof of Proposition 2. Using the CCF of Qt+τ − Qt, provided by Prop. 1, the Fourier
transform of the CDF of Qt+τ −Qt can be written as

πδd(w) +
exp

[
−∆α̂t,t+τ (−jw)−∆β̂>t,t+τ (−jw)X̂t +

∑m̄
m=m

¯
β̂>θm(−jw)δ̂2∆aθm

]
jw

,

where δd(·) denotes the Dirac delta function (a distribution). Taking the inverse Fourier
transform of the above equation at log(1−B/Bt) yields the result. �

Proof of Proposition 3. Let ρ > 0 be a discount factor. The value of an account over
(t, t+ τ ] is defined as the expected sum of discounted payments,

Vt,t+τ (a) = E

 ∑
i:Ti∈(t,t+τ ]

e−ρ(Ti−t)Zi

∣∣∣∣∣∣Ft, a

 = E
[∫

(t,t+τ ]×[0,1]

e−ρ(ŝ−t)rBŝ−N(dŝ, dr)

∣∣∣∣Ft, a

]
,

where N(dŝ, dr) is the equivalent random-measure representation of N = (Ti, Ri, i ≥ 1) and
Bŝ = B0 −

∑
i Zi1{Ti≤ŝ} denotes the remaining outstanding balance at ŝ ∈ (t, t + τ ]. Using

Fubini’s theorem, we obtain that

E
[∫

(t,t+τ ]

e−ρ(ŝ−t)
∫

[0,1]

rBŝ−N(dŝ, dr)

∣∣∣∣Ft, a

]
=

∫
(t,t+τ ]

e−ρ(ŝ−t)E
[∫

[0,1]

rBŝ−N(dŝ, dr)

∣∣∣∣Ft, a

]
.

Furthermore,∫
(t,t+s]

E
[∫

[0,1]

rBŝ−N(dŝ, dr)

∣∣∣∣Ft, a

]
= E

[∫
(t,t+s]×[0,1]

rBŝ−N(dŝ, dr)

∣∣∣∣Ft, a

]

= E

 ∑
Ti∈(t,t+s]

Zi

∣∣∣∣∣∣Ft, a


= Bt

(
1− E [exp(Qt+s −Qt)|Ft, a]

)
.

By Prop. 1, it is

E [exp(Qt+s −Qt)|Ft, a] = exp
(
−∆α̂t+τ−s,t+τ −∆β̂>t+τ−s,t+τX̂t +

∑
θm∈(t,t+s]

β̂>τ−s+θm δ̂
>
2 ∆aθi

)
,

where (α̂, β̂) solves the initial-value problem

˙̂αs + µ̂>0 β̂s + β̂>s σ̂0σ̂
>
0 β̂s/2 = 0, α̂t+τ = 0,

˙̂
βs + µ̂>1 β̂s + β̂>s σ̂1σ̂

>
1 β̂s/2 = (1− E[eβ̂

>
s δ̂1∆Ĵ ]) ê2, β̂t+τ = ê1,
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Figure A1: Empirical CDF of R.

on [t, t + τ ]. Denoting 1 − E [exp(Qt+s −Qt)|Ft, a] by νt(s|a), which is a nondecreasing
right-continuous function, the account value is given by Eq. (11). �

Model Identification.

In our implementation of the model, in addition to the feasibility constraints of Prop. A1, a
goodness-of-fit constraint is imposed to bound the parameter domain. This constraint relies
on the fact that any point process Nt (with N∞ = ∞) can be transformed into a standard
Poisson process using an appropriate change of time (Papangelou 1972). By imposing an
upper bound for the distance of the transformed point process to a standard Poisson process
one can bound Θλ. In addition to facilitating the numerical implementation, constraining
the parameter space is necessary, since taking the derivative of Eq. (13) with respect to κ̃
and subsequently the limit as κ̃→∞ yields

lim
κ̃→∞

κ̃2 ∂

∂κ̃
L
(
(T ki , 1 ≤ i ≤ N k

hk)
∣∣(Xs, s ∈ [0, hk]), (Rk

i , 1 ≤ i ≤ N k
hk), ϑ̃λ

)
> 0,

so that for κ̃ large enough the likelihood function is strictly increasing. In our implementa-
tion, we use the Cramér-von Mises goodness-of-fit measure, CVM

(
(T ki , 1 ≤ i ≤ N k

hk
)k̄k=1, ϑ̃λ

)
,

as proximity metric (Lehmann and Romano 2005).

Censored-Data Treatment.

In our dataset, a significant portion (32%) of accounts do not pay in full; for those the last
interarrival times are generally censored over the given finite study period. This truncation
phenomenon introduces a marked spike in the empirical distribution of payment interarrival
times Ski = T ki − T ki−1 as accounts are moved to the next collection phase following some de-

fined period of inactivity. Consequently, any ϑ̃λ (for which the intensity process is positive)
fails to satisfy the Cramér-von Mises goodness-of-fit measure at the 5%-level. This problem
is resolved in our implementation by virtue of the fact that under the true intensity process
λt(ϑλ) the Ski (ϑλ) are i.i.d. exponentially distributed. Thus, because exponential random
variables are memoryless, the censored portion of the last interarrival payment time of each
account can be reconstructed by a draw of an exponential random variable. In our imple-
mentation, ϑ̃λ is considered feasible if both the corresponding intensity process is positive
and the CVM test does not fail (with censored data reconstructed as before).
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Appendix B: Notation

Symbol Description Range

t Current time R+

i Index of repayment event N
Ti Arrival time of i-th repayment R+

Zi Amount of i-th repayment R+

Bt;Bi Outstanding balance (at time t; at t = Ti) R+

Ri , Zi/Bi−1 Relative repayment at t = Ti [0, 1]
FR Distribution of relative repayment Ri L∞
r̄ Expected relative repayment (r̄ , E[Ri]) [0, 1]

Nt ,
∑

i 1{Ti≤t} Repayment counting process (willingness-to-
repay)

N

Rt ,
∑

iRi1{Ti≤t} Cumulative relative repayment process
(ability-to-repay)

R+

Qi , log(1−Ri) Normalized logarithmic balance at time t = Ti R−
FQ Distribution of normalized logarithmic balance Qi L∞
Qt ,

∑
iQi1{Ti≤t} Cumulative normalized logarithmic balance

process
R−

Jt , [Nt,Rt]
> Repayment process N× R+

at Account-treatment schedule Rna
+

m Index of account-treatment action N+

θm Time of m-th scheduled treatment action R+

λt Intensity process R+

y Account-specific covariates Rny

λ∞(x) , λ∞,0 + λ>∞,1x Long-run steady-state intensity R+

κ(y) , κ0 + κ1y Mean reversion rate for intensity process R+

δ1(y) , [δ11(y), δ12(y)]> Sensitivity of λt to Jt R2
+

δ2(y) Sensitivity of λt to at Rna
+

Wt Wiener process RnX

Xt Group-covariate process RnX

µ(x) , µ0 + µ1x Drift term of group covariates RnX

σσ>(x) , σ0 +
∑nX

l=1 σ
l
1xl Diffusion term of group covariates RnX×nX

+

F , {Ft : t ∈ R+} Information filtration
Ft Available information at t F
el Unit vector in the standard Euclidean base of RnX {e1, . . . , enX}
êl Unit vector in the standard Euclidean base of RnX̂ {e1, . . . , enX̂}
j Imaginary unit {

√
−1}

s Generic time index R+

(αs, βs) Solution of the ODE (6)–(7) C2

Table B1: Summary of main notation, in the order of appearance.

29



Symbol Description Range

τ Prediction horizon R++

νt(s|a) Cash-flow measure [0, 1]
ρ Discount factor R+

Vt,t+τ Expected τ -horizon present value R+

vt,t+τ Realized τ -horizon present value R+

Πt,t+τ Repayment probability on (t, t+ τ ]
(DCS)

[0, 1]

K , {1, . . . , k̄} Account portfolio 2N

k Index of account (in portfolio K = {1, . . . , k̄}) K
hk Study horizon for account k R++

ϑ , [ϑλ;ϑX ] Model-parameter tuple Θλ ×ΘX

ε Price elasticity of collection value R

Table B1: Summary of main notation, in the order of appearance (cont’d).
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of Unsecured Consumer Credit with Risk of Default,” Econometrica, Vol. 75, No. 6, pp. 1525–1589.
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[44] Jódar, L., Navarro, E. (1991) “A Closed-Form Solution for Nonsymmetric Riccatti Differential
Equations with Invertible Quadratic Coefficient,” Applied Mathematics Letters, Vol. 4, No. 2, pp. 17–
20.
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